
Locality Sensitive Hashing
in a few lines of SQL

Christopher Strecker

January 13, 2015

Motivation Locality Sensitive Hashing LSH and Distance Measures Summary

Outline

Motivation

Locality Sensitive Hashing

LSH and Distance Measures
Euclidean Distance
Cosine Distance

Summary

2 / 11

Motivation Locality Sensitive Hashing LSH and Distance Measures Summary

Finding Similar Objects

Useful for many things:
• Recommendations
• Duplicate items
• Fraud detection
• Clustering
• . . .

Problem: “Obvious” algorithm needs O(n2) comparisons

• However: exact results often not required
⇒ LSH finds (configurable good) approximation in O(n)

3 / 11

Motivation Locality Sensitive Hashing LSH and Distance Measures Summary

Runtime Comparison
Back-of-the-envelope calculation

• Compare every objects with every object
• Or calculate one hash per object
• Assuming 1

106 s per comparison or 1
103 s per hash

“Obvious” algorithm LSH
Objects # Comparisons Runtime Runtime

10 000 50 Million 50 seconds 10 seconds
100 000 5 Billion 1.4 hours 1.6 minutes

1 000 000 500 Billion 6 days 16 minutes
10 000 000 50 Trillion 1.6 years 2.8 hours

100 000 000 5 Quadrillion 158 years 28 hours

4 / 11

Motivation Locality Sensitive Hashing LSH and Distance Measures Summary

Locality Sensitive Hashing
General idea

• Find “similar” numbers (within range of ±5)

{22,32,71,77,20,69,59,55,43,61,50,63,46,38,24,44}

5 / 11

Motivation Locality Sensitive Hashing LSH and Distance Measures Summary

Locality Sensitive Hashing
General idea

• Find “similar” numbers (within range of ±5)

{22,32,71,77,20,69,59,55,43,61,50,63,46,38,24,44}

• h(x) = round
(x

10

)
· 10

Bucket Elements
20 {22,20,24}
30 {32}
40 {43,38,44}
50 {50,46}
60 {59,55,61,63}
70 {71,69}
80 {77}

SELECT
round (x / 10 .0) ∗ 10 ,
array_agg (x)

FROM random_integers
GROUP BY

round (x / 10 .0) ∗ 10

5 / 11

Motivation Locality Sensitive Hashing LSH and Distance Measures Summary

Locality Sensitive Hashing
General idea

• Find “similar” numbers (within range of ±5)

{22,32,71,77,20,69,59,55,43,61,50,63,46,38,24,44}

• h(x) = round
(x

10

)
· 10

Bucket Elements
20 {22,20,24}
30 {32}
40 {43,38,44}
50 {50,46}
60 {59,55,61,63}
70 {71,69}
80 {77}

• g(x) =
⌊ x

10

⌋
· 10 + 5

Bucket Elements
25 {22,20,24}
35 {32,38}
45 {43,46,44}
55 {59,55,50}
65 {69,61,63}
75 {71,77}

5 / 11

Motivation Locality Sensitive Hashing LSH and Distance Measures Summary

Locality Sensitive Hashing
Improving the approximation

• Use a number of different hash functions h1,h2,h3,h4
• h = (h1 AND h2) OR (h3 AND h4)

h

0.5 10

0.5

1

Object similarity

Probability of LSH similarity

6 / 11

Motivation Locality Sensitive Hashing LSH and Distance Measures Summary

Motivation

Locality Sensitive Hashing

LSH and Distance Measures
Euclidean Distance
Cosine Distance

Summary

7 / 11

Motivation Locality Sensitive Hashing LSH and Distance Measures Summary

Euclidean Distance

“The” Distance

SELECT
array_agg (customer_id)

FROM customers
GROUP BY

h (age) ,
h (revenue)

Age

Revenue

8 / 11

Motivation Locality Sensitive Hashing LSH and Distance Measures Summary

Euclidean Distance

“The” Distance

SELECT
array_agg (customer_id)

FROM customers
GROUP BY

h (age) ,
h (revenue)

UNION

SELECT
array_agg (customer_id)

FROM customers
GROUP BY

h (π (age)) ,
h (π (revenue))

Age

Revenue

8 / 11

Motivation Locality Sensitive Hashing LSH and Distance Measures Summary

Cosine Distance

Vector Similarity

Age

Revenue

A

B

C

D

E
F

9 / 11

Motivation Locality Sensitive Hashing LSH and Distance Measures Summary

Cosine Distance

Vector Similarity

Bucket Elements
B1 {A, C}
B2 {}
B3 {D}
B4 {E}
B5 {B, F}
B6 {}

SELECT
array_agg (customer_id)

FROM customers
GROUP BY

angle ([1 , 0] , [age , revenue]) / 60

B1

B2

B3

B4

B5

B6

A

B

C

D

E
F

9 / 11

Motivation Locality Sensitive Hashing LSH and Distance Measures Summary

Conclusions
More data than science

• Object similarity: “simple” problem, interesting applications

• Comparing everything with everything is difficult to scale

• Approximations are (probably) OK!

• LSH: much faster, quite easy to implement

10 / 11

Motivation Locality Sensitive Hashing LSH and Distance Measures Summary

References

Ideas from chapter 3 of the book

• Mining of Massive Datasets
by Jure Leskovec, Anand Rajaraman, Jeffrey D. Ullman

• Online: http://www.mmds.org/

• MOOC at Coursera:
https://www.coursera.org/course/mmds

11 / 11

http://www.mmds.org/
https://www.coursera.org/course/mmds

Bonus Level

Jaccard Similarity
Set Distance

Items
Cart 1 2 3 4 5 6

A 3 - 3 - - -
B - 3 3 3 - -
C - - - - 3 3

D 3 - 3 3 - -

12 / 11

Bonus Level

Jaccard Similarity
Set Distance

Items
Cart 1 2 3 4 5 6

A 3 - 3 - - -
B - 3 3 3 - -
C - - - - 3 3

D 3 - 3 3 - -

hw = [4, 1, 2, 6, 5, 3]

Cart 4 1 2 6 5 3
A - 3 - - - 3

B 3 - 3 - - 3

C - - - 3 3 -
D 3 3 - - - 3

hw
h(A) 1
h(B) 4
h(C) 6
h(D) 4

12 / 11

Bonus Level

Jaccard Similarity
Set Distance

Items
Cart 1 2 3 4 5 6

A 3 - 3 - - -
B - 3 3 3 - -
C - - - - 3 3

D 3 - 3 3 - -

hw = [4, 1, 2, 6, 5, 3]

SELECT
ca r t_ f k ,
min (hw (i tem_fk))

FROM i t em_ in_ca r t
GROUP BY c a r t _ f k

hw
h(A) 1
h(B) 4
h(C) 6
h(D) 4

12 / 11

Bonus Level

Jaccard Similarity
Set Distance

Items
Cart 1 2 3 4 5 6

A 3 - 3 - - -
B - 3 3 3 - -
C - - - - 3 3

D 3 - 3 3 - -

hw = [4, 1, 2, 6, 5, 3] hx = [4, 3, 5, 1, 6, 2] hy = [6, 1, 5, 4, 3, 2] hz = [3, 2, 6, 4, 5, 1]

SELECT
ca r t_ f k ,
min (hw (i tem_fk)) ,
min (hx (i tem_fk)) ,
min (hy (i tem_fk)) ,
min (hz (i tem_fk))

FROM i t em_ in_ca r t
GROUP BY c a r t _ f k

hw hx hy hz
h(A) 1 3 1 3
h(B) 4 4 4 3
h(C) 6 5 6 6
h(D) 4 4 1 3

12 / 11

	Motivation
	Locality Sensitive Hashing
	LSH and Distance Measures
	Euclidean Distance
	Cosine Distance

	Summary
	Appendix
	Bonus Level

