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Finding Similar Objects

Useful for many things:
• Recommendations
• Duplicate items
• Fraud detection
• Clustering
• . . .

Problem: “Obvious” algorithm needs O(n2) comparisons

• However: exact results often not required
⇒ LSH finds (configurable good) approximation in O(n)
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Runtime Comparison
Back-of-the-envelope calculation

• Compare every objects with every object
• Or calculate one hash per object
• Assuming 1

106 s per comparison or 1
103 s per hash

“Obvious” algorithm LSH
# Objects # Comparisons Runtime Runtime

10 000 50 Million 50 seconds 10 seconds
100 000 5 Billion 1.4 hours 1.6 minutes

1 000 000 500 Billion 6 days 16 minutes
10 000 000 50 Trillion 1.6 years 2.8 hours

100 000 000 5 Quadrillion 158 years 28 hours
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Locality Sensitive Hashing
General idea

• Find “similar” numbers (within range of ±5)

{22,32,71,77,20,69,59,55,43,61,50,63,46,38,24,44}
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Locality Sensitive Hashing
General idea

• Find “similar” numbers (within range of ±5)

{22,32,71,77,20,69,59,55,43,61,50,63,46,38,24,44}

• h(x) = round
( x

10

)
· 10

Bucket Elements
20 {22,20,24}
30 {32}
40 {43,38,44}
50 {50,46}
60 {59,55,61,63}
70 {71,69}
80 {77}

SELECT
round ( x / 10 .0) ∗ 10 ,
array_agg ( x )

FROM random_integers
GROUP BY

round ( x / 10 .0) ∗ 10
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Locality Sensitive Hashing
General idea

• Find “similar” numbers (within range of ±5)

{22,32,71,77,20,69,59,55,43,61,50,63,46,38,24,44}

• h(x) = round
( x

10

)
· 10

Bucket Elements
20 {22,20,24}
30 {32}
40 {43,38,44}
50 {50,46}
60 {59,55,61,63}
70 {71,69}
80 {77}

• g(x) =
⌊ x

10

⌋
· 10 + 5

Bucket Elements
25 {22,20,24}
35 {32,38}
45 {43,46,44}
55 {59,55,50}
65 {69,61,63}
75 {71,77}
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Locality Sensitive Hashing
Improving the approximation

• Use a number of different hash functions h1,h2,h3,h4
• h = (h1 AND h2) OR (h3 AND h4)

h

0.5 10

0.5

1

Object similarity

Probability of LSH similarity
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Euclidean Distance

“The” Distance

SELECT
array_agg ( customer_id )

FROM customers
GROUP BY

h ( age ) ,
h ( revenue )

Age

Revenue
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Euclidean Distance

“The” Distance

SELECT
array_agg ( customer_id )

FROM customers
GROUP BY

h ( age ) ,
h ( revenue )

UNION

SELECT
array_agg ( customer_id )

FROM customers
GROUP BY

h (π ( age ) ) ,
h (π ( revenue ) )

Age

Revenue
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Cosine Distance

Vector Similarity

Age

Revenue
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B

C

D

E
F
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Cosine Distance

Vector Similarity

Bucket Elements
B1 {A, C}
B2 {}
B3 {D}
B4 {E}
B5 {B, F}
B6 {}

SELECT
array_agg ( customer_id )

FROM customers
GROUP BY

angle ( [ 1 , 0 ] , [ age , revenue ] ) / 60

B1

B2

B3

B4

B5

B6

A

B

C

D

E
F
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Conclusions
More data than science

• Object similarity: “simple” problem, interesting applications

• Comparing everything with everything is difficult to scale

• Approximations are (probably) OK!

• LSH: much faster, quite easy to implement
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Bonus Level

Jaccard Similarity
Set Distance

Items
Cart 1 2 3 4 5 6

A 3 - 3 - - -
B - 3 3 3 - -
C - - - - 3 3

D 3 - 3 3 - -
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Items
Cart 1 2 3 4 5 6

A 3 - 3 - - -
B - 3 3 3 - -
C - - - - 3 3

D 3 - 3 3 - -

hw = [4, 1, 2, 6, 5, 3]

Cart 4 1 2 6 5 3
A - 3 - - - 3

B 3 - 3 - - 3

C - - - 3 3 -
D 3 3 - - - 3

hw
h(A) 1
h(B) 4
h(C) 6
h(D) 4
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Set Distance

Items
Cart 1 2 3 4 5 6

A 3 - 3 - - -
B - 3 3 3 - -
C - - - - 3 3

D 3 - 3 3 - -

hw = [4, 1, 2, 6, 5, 3]

SELECT
ca r t_ f k ,
min (hw ( i tem_fk ) )

FROM i t em_ in_ca r t
GROUP BY c a r t _ f k

hw
h(A) 1
h(B) 4
h(C) 6
h(D) 4
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Bonus Level

Jaccard Similarity
Set Distance

Items
Cart 1 2 3 4 5 6

A 3 - 3 - - -
B - 3 3 3 - -
C - - - - 3 3

D 3 - 3 3 - -

hw = [4, 1, 2, 6, 5, 3] hx = [4, 3, 5, 1, 6, 2] hy = [6, 1, 5, 4, 3, 2] hz = [3, 2, 6, 4, 5, 1]

SELECT
ca r t_ f k ,
min (hw ( i tem_fk ) ) ,
min (hx ( i tem_fk ) ) ,
min (hy ( i tem_fk ) ) ,
min (hz ( i tem_fk ) )

FROM i t em_ in_ca r t
GROUP BY c a r t _ f k

hw hx hy hz
h(A) 1 3 1 3
h(B) 4 4 4 3
h(C) 6 5 6 6
h(D) 4 4 1 3
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